Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685871

RESUMEN

Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or ß-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and ß-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and ß-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.

2.
J Antibiot (Tokyo) ; 77(3): 182-184, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38200161

RESUMEN

Peptidoglycan is an important macromolecule in bacterial cell walls to maintain cell integrity, and its biosynthetic pathway has been well studied. Recently, we demonstrated that some bacteria such as Xanthomonas oryzae, a pathogen causing bacterial blight of rice, used an alternative pathway for peptidoglycan biosynthesis. In this pathway, MurD2, a MurD homolog, catalyzed the attachment of L-Glu to UDP-MurNAc-L-Ala and MurL, which did not show homology to any known protein, catalyzed epimerization of the terminal L-Glu of the MurD2 product to generate UDP-MurNAc-L-Ala-D-Glu. Because the alternative pathway also operates in some other plant pathogens and opportunistic pathogens, specific inhibitors of the alternative pathway could function as pesticides and antibiotics for these pathogens. In this study, we searched for specific inhibitors of the alternative pathway from metabolites produced by actinomycetes and identified a new oligomycin-class polyketide, which was revealed to inhibit the MurD2 reaction, in culture broth of Micromonospora sp. K18-0097.


Asunto(s)
Vías Biosintéticas , Peptidoglicano , Peptidoglicano/metabolismo , Oligomicinas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo
3.
Biomacromolecules ; 25(1): 349-354, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38095677

RESUMEN

Poly-γ-glutamic acid (PGA) is a natural polymer of d- and/or l-glutamic acid (Glu) linked by isopeptide bonds. We recently showed that PGA synthetase, an enzyme complex composed of PgsB, PgsC, and PgsA, uses only l-Glu for polymerization, and d-Glu residues are introduced by peptide epimerization. However, it remains unclear which of the three enzymes is responsible for epimerization because in vitro functional characterization of the membrane-associated PgsBCA complex has never been successful. Here, we performed gene exchange experiments and showed that PgsA is responsible for the epimerization. Additionally, we identified a region in PgsA that modulates epimerization activity based on homology modeling from the recently solved structure of MslH, which showed 53% identity to PgsA. Our results suggested that d/l-ratios of the PGA product can be altered by introducing amino acid substitutions in this region, which will be useful for the production of PGA with controlled d/l-ratios.


Asunto(s)
Ácido Glutámico , Ácido Poliglutámico , Ácido Poliglutámico/química , Racemasas y Epimerasas , Péptidos
4.
ACS Catal ; 13(20): 13369-13382, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38130475

RESUMEN

The pseudoglycosyltransferase (PsGT) enzyme VldE is a homologue of the retaining glycosyltransferase (GT) trehalose 6-phosphate synthase (OtsA) that catalyzes a coupling reaction between two pseudo-sugar units, GDP-valienol and validamine 7-phosphate, to give a product with α,α-N-pseudo-glycosidic linkage. Despite its biological importance and unique catalytic function, the molecular bases for its substrate specificity and reaction mechanism are still obscure. Here, we report a comparative mechanistic study of VldE and OtsA using various engineered chimeric proteins and point mutants of the enzymes, X-ray crystallography, docking studies, and kinetic isotope effects. We found that the distinct substrate specificities between VldE and OtsA are most likely due to topological differences within the hot spot amino acid regions of their N-terminal domains. We also found that the Asp158 and His182 residues, which are in the active site, play a significant role in the PsGT function of VldE. They do not seem to be directly involved in the catalysis but may be important for substrate recognition or contribute to the overall architecture of the active site pocket. Moreover, results of the kinetic isotope effect experiments suggest that VldE catalyzes a C-N bond formation between GDP-valienol and validamine 7-phosphate via an SNi-like mechanism. The study provides new insights into the substrate specificity and catalytic mechanism of a member of the growing family of PsGT enzymes, which may be used as a basis for developing new PsGTs from GTs.

5.
Biosci Biotechnol Biochem ; 87(11): 1316-1322, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541960

RESUMEN

Grisemycin, salinipeptin, and cypemycin belong to the linaridin class of ribosomally synthesized and posttranslationally modified peptides that contain multiple dehydrobutyrine and D-amino acid residues. The biosynthetic gene clusters of these linaridins lack obvious candidate genes for the dehydratase and epimerase required to introduce dehydrobutyrine and D-amino acid residues, respectively. However, we previously demonstrated that the grisemycin (grm) cluster contained cryptic dehydratase and epimerase genes by heterologous expression of this biosynthetic gene cluster in Streptomyces lividans and proposed that two genes (grmH and grmL) with unknown functions catalyze dehydration and epimerization reactions. In this study, we confirmed that both GrmH and GrmL, which were shown to constitute a protein complex by a co-purification experiment, were required to catalyze the dehydration, epimerization, and proteolytic cleavage of a precursor peptide GrmA by in vivo experiments. Furthermore, we demonstrated that GrmH/GrmL complex accepted salinipeptin and cypemycin precursor peptides, which possess three additional amino acids.


Asunto(s)
Racemasas y Epimerasas , Streptomyces , Humanos , Racemasas y Epimerasas/metabolismo , Deshidratación/genética , Streptomyces/genética , Péptidos/química , Aminoácidos/metabolismo , Hidroliasas , Familia de Multigenes
6.
Chemistry ; 29(33): e202301056, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37015882

RESUMEN

The potent antitumor antibiotic pactamycin is an aminocyclopentitol-containing natural product produced by the soil bacterium Streptomyces pactum. Recent studies showed that the aminocyclopentitol unit is derived from N-acetyl-D-glucosamine, which is attached to an acyl carrier protein (ACP)-bound polyketide by a glycosyltransferase enzyme, PtmJ. Here, we report a series of post-glycosylation modifications of the sugar moiety of the glycosylated polyketide while it is still attached to the carrier protein. In vitro reconstitution of PtmS (an AMP-ligase), PtmI (an ACP), PtmJ, PtmN (an oxidoreductase), PtmA (an aminotransferase), and PtmB (a putative carbamoyltransferase) showed that the N-acetyl-D-glucosamine moiety of the glycosylated polyketide is first oxidized by PtmN and then transaminated by PtmA to give ACP-bound 3-amino-3-deoxy-N-acetyl-D-glucosaminyl polyketide. The amino group is then coupled with carbamoyl phosphate by PtmB to give a urea functionality. We also show that PtmG is a deacetylase that hydrolyses the C-2 N-acetyl group to give a free amine.


Asunto(s)
Pactamicina , Policétidos , Proteína Transportadora de Acilo , Glicosilación , Acetilglucosamina
7.
ACS Chem Biol ; 18(2): 367-376, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648321

RESUMEN

Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.


Asunto(s)
Actinobacteria , Diabetes Mellitus Tipo 2 , Humanos , Acarbosa , Proteínas Bacterianas/metabolismo , Actinobacteria/metabolismo , alfa-Amilasas/metabolismo
8.
Biochemistry ; 61(22): 2628-2635, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36288494

RESUMEN

Acarbose, a pseudotetrasaccharide produced by several strains of Actinoplanes and Streptomyces, is an α-glucosidase inhibitor clinically used to control type II diabetes. Bioinformatic analysis of the biosynthetic gene clusters of acarbose in Actinoplanes sp. SE50/110 (the acb cluster) and Streptomyces glaucescens GLA.O (the gac cluster) revealed their distinct genetic organizations and presumably biosynthetic pathways. However, to date, only the acarbose pathway in the SE50/110 strain has been extensively studied. Here, we report that GacI, one of the proteins that appear to be different between the two pathways, is a bifunctional glycosyltransferase family 5 (GT5)-phosphatase (PP) enzyme that functions at two different steps in acarbose biosynthesis in S. glaucescens GLA.O. In the acb pathway, the GT and the PP reactions are performed by two different enzymes. Truncated GacI proteins having only the GT or the PP domain showed comparable catalytic activity with the full-length GacI, indicating that domain separation does not significantly affect their respective catalytic activity. GacI, which is widely distributed in many Streptomyces, represents the first example of naturally occurring GT5-PP bifunctional enzymes biochemically characterized.


Asunto(s)
Diabetes Mellitus Tipo 2 , Streptomyces , Humanos , Acarbosa/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
9.
RSC Chem Biol ; 3(5): 519-538, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656477

RESUMEN

Natural ribomimetics represent an important group of specialized metabolites with significant biological activities. Many of the activities, e.g., inhibition of seryl-tRNA synthetases, glycosidases, or ribosomes, are manifestations of their structural resemblance to ribose or related sugars, which play roles in the structural, physiological, and/or reproductive functions of living organisms. Recent studies on the biosynthesis and biological activities of some natural ribomimetics have expanded our understanding on how they are made in nature and why they have great potential as pharmaceutically relevant products. This review article highlights the discovery, biological activities, biosynthesis, and development of this intriguing class of natural products.

10.
Nat Commun ; 13(1): 3455, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705566

RESUMEN

Acarbose is a bacterial-derived α-glucosidase inhibitor clinically used to treat patients with type 2 diabetes. As type 2 diabetes is on the rise worldwide, the market demand for acarbose has also increased. Despite its significant therapeutic importance, how it is made in nature is not completely understood. Here, we report the complete biosynthetic pathway to acarbose and its structural components, GDP-valienol and O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose. GDP-valienol is derived from valienol 7-phosphate, catalyzed by three cyclitol modifying enzymes, whereas O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose is produced from dTDP-4-amino-4,6-dideoxy-D-glucose and maltose by the glycosyltransferase AcbI. The final assembly process is catalyzed by a pseudoglycosyltransferase enzyme, AcbS, which is a homologue of AcbI but catalyzes the formation of a non-glycosidic C-N bond. This study clarifies all previously unknown steps in acarbose biosynthesis and establishes a complete pathway to this high value pharmaceutical.


Asunto(s)
Acarbosa , Diabetes Mellitus Tipo 2 , Acarbosa/metabolismo , Vías Biosintéticas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Hipoglucemiantes/uso terapéutico
11.
Int J Microbiol ; 2020: 8898631, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676116

RESUMEN

Indonesian marine environments are known to house diverse organisms. However, the potential for bacteria from these environments as a source of antibacterial agents has not been widely studied. This study aims to explore the antibacterial potential of secondary metabolites produced by bacterial symbionts from sponges and corals collected in the Indonesian waters. Extracts of 12 bacterial isolates from sponges or corals were prepared by cultivating the bacteria under a number of different media conditions and using agar well diffusion assays to test for antibacterial activity. In addition, the morphology, physiology, and biochemical characteristics and 16S rRNA sequence of each isolate were used to determine their taxonomic classification. All tested bacterial isolates were able to produce secondary metabolites with various levels of antibacterial activity depending on medium composition and culture conditions. Two of the bacteria (RS3 and RC4) showed strong antibacterial activities against both Gram-negative and Gram-positive bacteria. A number of isolates (RS1, RS3, and RC2) were co-cultured with mycolic acid-containing bacteria, Mycobacterium smegmatis or Rhodococcus sp. However, no improvements in their antibacterial activity were observed. All of the 12 bacteria tested were identified as Streptomyces spp. LC-MS analysis of EtOAc extracts from the most active strains RS3 and RC4 revealed the presence of a number of dactinomycin analogues and potentially new secondary metabolites. Symbiotic Streptomyces spp. from sponges and corals of the Indonesian marine environments have great potential as a source of broad-spectrum antibacterial agents.

12.
Biochemistry ; 58(51): 5112-5116, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31825604

RESUMEN

The myo-inositol-1-phosphate synthase (MIPS) ortholog Ari2, which is encoded in the aristeromycin biosynthetic gene cluster, catalyzes the formation of five-membered cyclitol phosphate using d-fructose 6-phosphate (F6P) as a substrate. To understand the stereochemistry during the Ari2 reaction in vivo, we carried out feeding experiments with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]glucose in the aristeromycin-producing strain Streptomyces citricolor. We observed retention of the 2H atom of (6S)-d-[6-2H1]glucose and no incorporation of the 2H atom from (6R)-d-[6-2H1]glucose in aristeromycin. This indicates that Ari2 abstracts the pro-R proton at C6 of F6P after oxidation of C5-OH by nicotinamide adenine dinucleotide (NAD+) to generate the enolate intermediate, which then attacks the C2 ketone to form the C-C bond via aldol-type condensation. The reaction of Ari2 with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]F6P in vitro exhibited identical stereochemistry compared with that observed during the feeding experiments. Furthermore, analysis of the crystal structure of Ari2, including NAD+ as a ligand, revealed the active site of Ari2 to be similar to that of MIPS of Mycobacterium tuberculosis, supporting the similarity of the reaction mechanisms of Ari2 and MIPS.


Asunto(s)
Adenosina/análogos & derivados , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Adenosina/biosíntesis , Adenosina/química , Modelos Moleculares , Mio-Inositol-1-Fosfato Sintasa/química , Conformación Proteica , Estereoisomerismo , Streptomyces/enzimología
13.
Redox Biol ; 25: 101076, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30642723

RESUMEN

The ability to selectively eradicate oncogene-addicted tumors while reducing systemic toxicity has endeared targeted therapies as a treatment strategy. Nevertheless, development of acquired resistance limits the benefits and durability of such a regime. Here we report evidence of enhanced reliance on mitochondrial oxidative phosphorylation (OXPHOS) in oncogene-addicted cancers manifesting acquired resistance to targeted therapies. To that effect, we describe a novel OXPHOS targeting activity of the small molecule compound, OPB-51602 (OPB). Of note, a priori treatment with OPB restored sensitivity to targeted therapies. Furthermore, cancer cells exhibiting stemness markers also showed selective reliance on OXPHOS and enhanced sensitivity to OPB. Importantly, in a subset of patients who developed secondary resistance to EGFR tyrosine kinase inhibitor (TKI), OPB treatment resulted in decrease in metabolic activity and reduction in tumor size. Collectively, we show here a switch to mitochondrial OXPHOS as a key driver of targeted drug resistance in oncogene-addicted cancers. This metabolic vulnerability is exploited by a novel OXPHOS inhibitor, which also shows promise in the clinical setting.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Fosforilación Oxidativa , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Chembiochem ; 17(22): 2143-2148, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27577857

RESUMEN

Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome-mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo-inositol-1-phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five-membered cyclitol phosphate from d-fructose 6-phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.


Asunto(s)
Adenosina/análogos & derivados , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Ciclitoles/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Adenosina/biosíntesis , Adenosina/química , Antibacterianos/química , Proteínas Bacterianas/genética , Cósmidos/genética , Cósmidos/metabolismo , Ciclitoles/química , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Mio-Inositol-1-Fosfato Sintasa/genética , Nucleósidos/química , Liasas de Fósforo-Oxígeno/genética , Espectrometría de Masa por Ionización de Electrospray , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética
15.
Cancer Sci ; 106(7): 896-901, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25912076

RESUMEN

We carried out a multicenter dose-escalation phase I study of oral OPB-51602, a signal transducer and activator of transcription 3 phosphorylation inhibitor, in patients with relapsed or refractory hematological malignancies to evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary antitumor activity. Twenty patients were treated with OPB-51602 at doses of 1, 2, 3, 4, and 6 mg in the "3 + 3" dose escalation design. The most common treatment-related adverse events included nausea (55%), peripheral sensory neuropathy (45%), and diarrhea (40%). The most frequently observed grade 3 or 4 drug-related adverse events were neutropenia (20%), leukopenia (15%), lymphopenia (10%), and thrombocytopenia (10%). The MTD was 6 mg, with dose-limiting toxicities of grade 3 lactic acidosis and increased blood lactic acid levels observed in one of three patients and grade 1-2 peripheral neuropathy in three of three patients. The recommended dose was determined to be 4 mg. OPB-51602 was rapidly absorbed, and exposure tended to increase in a dose-dependent manner. Accumulation of OPB-51602 was seen with 4 weeks of multiple treatments. No clear therapeutic response was observed. Durable stable disease was observed in two patients with acute myeloid leukemia and one with myeloma. In conclusion, the MTD of OPB-51602 was 6 mg. OPB-51602 was safe and well tolerated in a dose range of 1-4 mg. However, long-term administration at higher doses was difficult with the daily dosing schedule, and no response was seen. Therefore, further clinical development of OPB-51602 for hematological malignancies with a daily dosing schedule was terminated.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Anciano , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidad , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Náusea/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo
16.
Intern Med ; 41(5): 408-11, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12058894

RESUMEN

We treated a case of Tsutsugamushi disease diagnosed by polymerase chain reaction (PCR) using a scab specimen at the bite site of trombiculid mites. Otherwise the diagnosis could not be confirmed by serum antibody test nor the PCR test of blood. The genome of Rickettsia tsutsugamushi was detected and identified as the Kawasaki serotype strain. An attempt to extract the genome from the scab has not been reported, thus our data suggest that the scab is a useful specimen to confirm the diagnosis of Tsutsugamushi disease.


Asunto(s)
Mordeduras y Picaduras/parasitología , Orientia tsutsugamushi/aislamiento & purificación , Tifus por Ácaros/microbiología , Trombiculidae/microbiología , Animales , Antibacterianos/uso terapéutico , ADN Bacteriano/análisis , Femenino , Genoma Bacteriano , Humanos , Persona de Mediana Edad , Minociclina/uso terapéutico , Orientia tsutsugamushi/genética , Reacción en Cadena de la Polimerasa , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...